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CURRENT SWITCHING FROM A FAST TRIP INTO A SHUNT WIRE 

V. A. Lebedev, D. P. Leper, 
and V. A. Yagnov 

UDC 621.316.5.022.019.3 

In multistage current switching in a circuit containing an inductive energy store IES, 
the fast trip FT is shunted by one or more exploding wires [1-3]. To provide short times in 
the closing stage (on transferring the current to the load), it is desirable to perform the 
switching in the first stage at the maximum permissible current density in the shunting wire 
SW. We have to determine the maximum permissible current densities, since there are physi- 
cal factors that prevent the transfer of a large current to a conductor of small cross sec- 
tion. So far, it has been considered that the main reason for failure at high current 
densities in the SW is breakdown in the FT at the stage when its electrical strength is re- 
covering. In fact, as the density jo of the current switched into the wire increases, the 
time from the arc quenching in the FT to the explosion of the SW falls in proportion to j~2, 
and therefore at high current densities the arc gap does not have time to recover its elec- 
trical strength by the instant of explosion, which leads to breakdown in the FT. However, 
we show here that the FT can fail also in an earlier stage, when the current transfer to the 
SW is not completed. The study is a theoretical consideration of the constraints in switch- 
ing a current from an FT to SW arising from the rapid heating of the SW and the marked in- 
crease in resistance at high current densities. 

i. The increase in resistance in the initial stages of electrical explosion in a con- 
ductor is [4, 5] determined in the main by the specific energy deposition q = Q/m, where 

t 
Q~ I~Rdt is the total deposited energy and m is the mass of the conductor. The increase 

0 

in resistance is related to the energy input rate and is very marked at the stage of elec- 
trical explosion, but it does not play a large part in the initial stages (for R/no ~ 15 
for copper and for R/no ~ ii for aluminum). If the energy input rate to the conductor is 
small by comparison with the time for the phase transition from the solid state to the liquid 
one), then the dependence of the relative resistance on the specific energy deposition in 
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the initial stage is quasistatic. At a high input rate, the relationship becomes linear 
and is a continuation of the linear relationship for the solid stage; the maximum deviation 
from the quasistatic relationship does not exceed 16% for copper (even less for aluminum). 
This is a quite sufficient accuracy for the switching model developed here, since the 
accuracy of the assumption of (2.1) on the linear increase in voltage in the FT can hardly 
exceed 15-20%. We use the quasistatic dependence of the relative resistance R/Ro on the 
specific energy deposition q. 

For the stage of heating in the solid state (R < Rmp, q < qmp) we have as follows if 
we neglect the effect of thermal expansion: 

R / R  o ~ l - ~ q / C p  ~ I ~ q / q l ,  (i.i) 

where ~ is the temperature coefficient of resistance, Cp is the specific heat of the metal, 
and ql = cn/~ is the specific energy deposition corresponding to increase in specific re- 
sistance by a factor of two; ql = 95 J/g for copper, and Rmp/Ro = 5.96, qmp = 468 J/g. The 
following relationship [6] describes the melting stage on the assumption that the melting 
starts at the surface (the liquid and solid phases are considered as conductors connected 
in parallel): 

no - ~ t I-- PZ k + -i-- (1.2) 

where 9s and 01 are the specific resistances of the solid and liquid phases at the melting 
point, I and AV/V are the latent heat of fusion and the relative increase in volume on the 
phase transition, and Aq = q -- qmp" For copper ps/01 = 0.48, I = 0.21 kJ/g, AV/V = 0.045, 
and (1.2) is applicable for 5.96 ~ R/Ro ~ 11.9, 468 J/g ~ q ~ 678 J/g. Equations (I.I) 
and (1.2) can be combined into a single relationship R/Ro = f(q/ql) = f(Q/q~m). Differenti- 
ation of f(Q/qlm) with respect to time gives the differential equation (3.2). The function 
F(R/Ro) appearing in (3.2) is equal to one up to the melting point of the conductor (R/Ro ~ 
5.96). 

2. In describing the arc in the FT, we use the model of (2.1) giving linear increase 
in the voltage, which is indicated by the following considerations. It is assumed that the 
extension of the arc is quasistationary, and then the arc is characterized by a statistical 
relationship between the field strength and current E(ia) ; the arc voltage is Ua = E(ia)vt, 
where v is the rate of extension (subsequently assumed constant). For a blown arc working 
at 103-105 A under conditions of constant pressure, there is only a slight dependence of the 
field strength on the current, which enables one to replace E(ia) by some average value E. 
In that approximation, the voltage on the arc gap is 

U a - E v t .  (2.1) 

In this description, the product Ev (the rate of increase in voltage) is a basic parameter 
characterizing the FT. For example, for the FT of explosive type examined in [7] E ~ i00 
V/cm, v ~ l0 s cm/sec, which gives Ev ~ 107 V/sec. The quasistationary extension of the 
arc no longer applied when i a approaches zero; the field strength in the arc falls and the 
voltage deviates from the linear law of (2.1). A more detailed study can be made of this 
stage only by considering the dynamic properties of the arc [8, 9]. Note that the basic 
assumption of (2.1) is inapplicalbe to an FT in which the arc burns in a closed volume under 
conditions of increasing pressure. 

An experimental test of (2.1) was based on measuring the voltage with an FT of explo- 
sive type working at a constant current io (without shunting). In that case, the measured 
voltage is U = Ua + iodLa/dt, where La is the inherent arc inductance. The voltage wave- 
forms (Fig. i) for currents of 3 kA (solid line) and 25 kA (broken line) have a prominent 
linear part with Ev ~ 1"107 V/set and are very similar to one another. The error intro- 
duced by the iodLa/dt term into the measured voltage is negligible. In fact, the arc in- 
ductance is L a ~, ~ovt, wnere ~o = 4v'10 -7 H/m, v = 105 cm/sec, and at io = 25 kA we have 
iodLa/dt ~ io~ov = 31 V, which is only 1.3% of the maximum voltage of 2.3 kV developed on 
the FT. 

3. The IES is the source the constant current io; the electrical circuit in switching 
from the FT to the SW contains two parallel branches: the FT branch described by (2.1) and 
the SW branch described by (3.2). Each of these branches has its own parasitic inductance 
L t and Ls. The condition for equality of the voltages on the two branches gives 
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Ltdi a /dt + Ev t  = ~ di/dt + JR,. (3.1) 

where R and i are the resistance and current for the SW branch. As i a = io -- i, we get (3.2), 
where L = L t + L s is the overall parasitic inductance. 

The following is the complete system of equations describing the current switching from 
the FT to the SW: 

Ldi/dt ~- iR = Evt; (3.2) 

1 dR i2R F(~);  (3.3) 
R o dt qlm 

t = 0, i = 0, R = Ro. (3.4) 

The switching time m s in the SW is defined by the condition 

i = i o for t = Ts. ( 3 . 5 )  

4. If we convert to dimensionless variables x = t/ml, y = i/il, z = R/Ro, where m~ = 

(Ev) ~ ; i 1 [----~--~ j , t h e n  (3 .2)- (3 .5)  b e c o m e  

fly' -~- yz = x; (4.1)  

z" ~- y2zF(z); (4.2) 

x = 0, g = 0, z = t ;  (4.3) 

g = y  or x = ~ . / ~ .  
(4.4) 

The dimensionless parameters ~ and y appearing in (4.1) and (4.4) are defined by 

~ = L [ R S q l ' ~ J  - - Z s / a  L ~ J  ' 

~== i 0 V R~ 11/3 i0ll/3 [ p~ ]1/3 
[Evq,mJ = ~ [ E---~q~6 J ' 

where ~ = m/V is the density and Po is the initial specific resistance of the conductor 
(for copper 6 = 8.9 g/cm 3, Po = 1.72"10 -6 g.cm), with ~ and S the length and cross section 
of the SW. Parameter B has the meaning of a dimensionless inductance, while y is the di- 
mensionless current density. States with identical values of 8 and y are similar. The 
similarity is to be understood as similarity in the time dependence of the current for each 
of the branches, and also in the voltages on any of the circuit components and in the re- 
sistances of the arc and the SW, as well as the power due to the Joule losses in the arc and 
the SW. 

5. In the limiting case of no inductance (L = 0), system (3.1)-(3.3) has an analytic 
solution that applies for the stage of heating in the solid state (R/Ro <~ 5.96): 

(+11 2 a ' i =  ~ / / - t  R = Ro + 2_ 

Ro + 3 \ ~ , ]  

The function i(t) according to (5.1) has its maximum at tma x = (3)*/aT,, whose value is 
ima x = (i/3):/6ii; switching is possible if io < ima x, and this condition in dimensionless 
form is y < y, = (1/3) I/6 = 0.83 and corresponds to there being a critical current density 
in the SW: 

] ,  - 0.83 ( 5 . 2 )  

At current densities jo = io/S > j,, the current in the SW passes through a maximum and be- 
gins to fall, and the current returns to the arc. Then (5.2) gives for a copper conductor 
that j, = 5.5"10 ~ (Ev/l) I/3, where j, is in A/cm 2, Ev is in V/sec, and Z is in am. The re- 

i/3 
sistance for tma x = 3 'ml has the value Rma x = RoVe, which corresponds to a specific 
energy deposition of 70 J/g. The solution of (5.1) is approximately applicable when the 
voltage across the inductance Ldi/dt at any time is small by comparison with the voltage on 
the FT U a = Evt. In that case we can neglect the term Ldi/dt in (3.1) and the term By' in 
(4.1). Switching with ILdi/dtl << U a may be called noninductive or slow. The range of 
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applicability for the slow-switching approximation is shown by more detailed consideration 
to be defined by ~y << i; as B/y = LS2Ev/(i~l~p~) , the switching is slow if the inductance 
L is small, Ev is small, S is small, the length I is large, and the switched current io is 
large. 

6. The system (4.1)-(4.4) has been solved numerically by computer for the general 
case. Equations (4.1) and (4.2) together with the initial conditions (4.3) contain the 
parameter ~, while parameter y appears only in the dimensionless switching condition of 
(4.4). Therefore, (4.1)-(4.3) define a one-parameter family o~ solutions y(x, B), z(x, B). 
The y(x, ~) curves (Fig. 2) show the time dependence of the current in the SW in terms of 
dimensionless variables, and there is a maximum for any B (~ = 0, i, 3, i0, and 30 for 
curves 1-5 correspondingly). The switching condition of (4.4) can be satisfied only for y < 
Ymax(~); Y > Ymax(B) the current returns from the SW to the arc, which corresponds to fail- 
ure in the FT. Therefore, Ymax acts as the critical value y, corresponding to the boundary 
of the switching region. In Fig. 2, we have shown the points corresponding to the start 
of melting AR and the point where all the mass of the conductor is in the liquid state B B 
on the y(x, B) curves. Points A B and B B lie on the falling branch of the y(x, 9) 
curve for ~ small, while for B >> 1 the fall in current in the SW and the start of melting 
almost coincide in time. 

Figure 3 shows the boundary of the switching region Y,(B) in the plane of B and y, as 
well as R/Ro = const curves corresponding to a constant relative increase in the resistance 
attained at the end of the switching. The values of R/Ro are shown by the curves together 
with the corresponding values of the specific energy deposition. The boundary to the 
switching region for ~ << 1 lies at y, = 0.83, which corresponds to the noninductive limit- 
ing case. There is a slight increase in y, as 8 increases in the region ~ ~ 1 and then a 
slow fall in y, for 8 ~ 1 (approximately y, ~ ~-i/~). Figure 3 shows that u varies very 
little (from 1 to 0.6) as ~ varies over a wide range, which means that we can replace the 
slow-switching condition B/Y << 1 near the boundary of the switching region (fast-switching 
condition ~/y >> i) by the simpler conditions B << 1 and B >> i; the curve R/Ro = const for 

>> 1 is characterized by a fall in y in accordance with the same law y ~ B -I/5. The curve 
R/Ro = 12 begins at 8 = 54 and almost coincides with the switching boundary, which means that 
the conversion of the entire mass of conductor to the liquid state should almost never be 
observed at the end of switching. 

Curve y = 0.8y, (broken line in Fig. 3) corresponds to a current density in the SW 
representing 80% of j,; points 1-3 in Fig. 3 show points on the y = 0.8y, curve correspond- 
ing to switching of a current io = i00 kA into a copper conductor with I = i00 cm with a 
voltage rise rate Ev = i06 V/sec (point i), i07 V/sec (point 2), or i0 e V/sec (point 3). 
The SW inductance is L s = i0 -6 H and can be neglected. The cross sections of the SW for 
points 1-3 are correspondingly L t ~ i0 -7 H and can be neglected. The cross sections of the 
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SW for points I-3 are correspondingly 8.5 mm =, 3.8 mm =, 1.91 mm a. Figure 4 shows numerical 
waveforms for the currents in the FT (solid lines) and the voltages on the two-terminal 
FT-SW network corresponding to the parameters of points 1-3. The characteristic steps on 
the voltage oscillograms arise because the voltage on the inductance instantaneously becomes 
zero at the moments corresponding to the end of switching. 

7. It has thus been shown that there are critical current densities j, near which the 
heating of the conductor during the switching becomes important; for j > j, the resistance 
of the SW increases so rapidly that the current in the arc does not fall to zero and begins 
to rise again, i.e., the FT fails. With fast switching (B >> i), not more than 700 J/g can 
be pumped into the SW by the end of switching (R/Ro ~ 12); with slow switching (B << I), the 
permissible specific energy deposition is reduced to 70 J/g (R/Ro = /~). The analytic ex- 
pression for the critical current density in slow switching has been derived, while for 
fast switching the critical density may be calculated from Fig. 3 on the basis that 

Jo - "7 [Au ]~/3. 

We thus see that there are two possible reasons for failure of the FT at high current 
densities: I) the return of the current to the arc considered here before completion of the 
current switching in the SW, and 2) breakdown in the arc gap at the stage of electrical 
strength recovery. It is at present uncertain which of these two constraints plays the main 
part. One assumes that under some conditions the first constraint will be the important 
one, while the second will be important under others. Our estimates for the critical current 
density in any case indicate an upper bound to the current density in the SW above which 
switching is impossible. 

We are indebted to E. A. Azizov for a discussion. 
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THERMAL LIMITATION ON THE VELOCITY OF RING CONDUCTORS 

IN THE CASE OF INDUCTION AXIAL ACCELERATION 

A. M. Baltakhanov and E. N. Ivanov UDC 538.54.001 

The possibility of obtaining velocities of 1-5 km/sec with plane ring conductors in 
electromagnetic accelerators was demonstrated experimentally in [i, 2]. One of the main 
limitations in achieving high velocities when conductors are thro~ into a magnetic field 
is the heating of the conductor and its transition from the solid state into a liquid or 
gaseous form. Nevertheless, in the practical utilization of high-velocity accelerators of 
macroparticles, the problem arises of determining the physical and mechanical properties 
and physical state of the thro~ impactors. It is extremely difficult to solve this problem 
experimentally due to the short duration of the acceleration process and the high velocities 
of the impactors. In [3], by means of an approximate analysis, a relation is obtained which 
establishes the connection between the heating and the electromagnetic acceleration of the 
conductor, which holds over a range from the boiling point of nitrogen to the melting point 
of the corresponding metal, and in [4, 5] expressions are obtained for the limiting velocity 
of plane metal macroparticles in the ideal case of their acceleration in a uniform magnetic 
field. 

In the present paper we consider the heating which occurs ~en a plane metal ring is 
accelerated in a two-dimensional pulsed magnetic field of a single-turn inductor. 

The basic acceleration arrangement is shown in Fig. i. The system of ~tegrodifferen- 
tial equations which describe the electromagnetic and electromechanical transients in this 
device has the form [6] 

., [ v (Q, t) 
6(Q, t)% vt"v(O't)2a dtd ~ f ~ ( M , t )  K(Q, t for i = 1, ( 1 )  

i=l  SL [0 for i : "2; 

m-7i-=~o g(O~t)~ g(M,l) - - - -  _ _  --K+ ~2 ~=lsl / i Z Q _ _ Z ~ - _ ( r Q + r M ) 2  / r M r  Q , (rQ__rM)2+(ZQ__ZM) 2 E as[d3,2; (2 )  

~/d t  = v, (3) 

w h e r e  

t 

l di~ t i~dt; 
q~ [i 1 ( t )]  == U o - -  Boi 1 -- L o dt C 

0 

il :_. ('j 5(M, t_) dSl; 
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